Abstract

Adsorptive desulfurization over metal-organic frameworks (MOFs) remains a challenge in maintaining good performance in the presence of water. Herein, multimetallic Fe/Ni/Cu/Zn-(MIL-88B)-on-(MOF-5) is first achieved through phase-competition-driven growth technology. The adsorption performance of thiophene (Th), benzothiophene (BT), and dibenzothiophene (DBT) in model fuels is systematically investigated at mild temperature and follows the order Fe/Ni/Cu/Zn-(MIL-88B)-on-(MOF-5) > MOF-5 > MIL-88B. Excellent adsorptive activity is mainly ascribed to the associative effects of multimetal active sites, suitable pore sizes and shapes, acid-base interactions, and complexation. Meanwhile, MIL-88B exhibits a "brick-wall" effect and effectively enhances the water stability of Fe/Ni/Cu/Zn-(MIL-88B)-on-(MOF-5) more than does MOF-5. Fe/Ni/Cu/Zn-(MIL-88B)-on-(MOF-5) exhibits superior stability even after being immersed in water for 5 days, maintaining 77, 77, and 81% of the initial DBT, BT, and Th uptake capacities. After five periods of regeneration, more than 90% of the desulfurization capacity of Fe/Ni/Cu/Zn-(MIL-88B)-on-(MOF-5) was recovered. This work provides a new strategy for the synthesis of desirable MOF-on-MOF, promoting its potential application to adsorption desulfurization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.