Abstract

Given its high activity and nontoxicity, nanoscale zero-valent iron (nZVI) has been intensively used to remediate the groundwater contaminated by trichloroethylene (TCE). However, the long-term stability of nZVI could be impaired by aging and natural organic matter. Herein, a montmorillonite-supported sulfurated nZVI (S-nZVI/MMT) was successfully synthesized, which exhibited robust activity and stability under environmental conditions through the interlayer interaction of MMT. The removal efficiency of TCE by S-nZVI/MMT reached 78.7%, which was much higher than that by S-nZVI and nZVI/MMT, within 12 h with Fe/S dosage ratio of 1:1 and particle dosage of 4 g/L. Importantly, the presence of high concentration of humic acid (up to 50 mg/L) caused unobvious effect on the performance of S-nZVI/MMT toward TCE removal, and more than 68.1% of removal efficiency of TCE could be maintained when the particle was aged in water for 30 days. The high activity and stability of S-nZVI/MMT may be attributed to the formation of nano-sized S-nZVI clusters in the MMT interlayer, protecting the active sites from passivation of humic acid. This work may promote the application of nZVI under complex natural conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call