Abstract

Piezoelectric catalysis, which converts mechanical energy into chemical activity, has important applications in environmental remediation. However, the piezo-catalytic activity of various piezoelectric materials is limited by the weak piezoelectricity as well as the mismatched band-gap, leading to inefficient electron-hole pair generation and difficult carrier migration. Here, a simple strategy combining phase boundary and energy band structure modulation was innovatively proposed to enhance the piezo-catalytic activity of BaTiO3 ferroelectric by Ce ions selecting different doping sites. Thanks to the coexistence of tetragonal (P4mm) and orthorhombic (Amm2) phases effectively flattened the Gibbs free-energy and thus enhanced the piezoelectric activity, as well as suitable energy bandwidth facilitating the carrier migration were realized in the B-sites doped Ba(Ti0.95Ce0.05)O3. The degradation rate constant k of tetracycline (TC) was high to 30.56 × 10-3 min−1, which was 2.03 times higher than that of pure BaTiO3 and superior to most representative lead-free perovskite piezoelectric materials. Theoretical calculations validated that the charge density and high O2 and OH– adsorption energy on the Ba(Ti0.95Ce0.05)O3 surface promoted more efficient •O2– and •OH radicals conversion and bettered response to piezo-catalytic reaction. This work is important to design high-performance piezo-catalysts by synergistic regulation of phase boundary and energy band structure in perovskite materials for long-term antibiotic tetracycline removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call