Abstract

Target detection and tracking with passive infrared (IR) sensors can be challenging due to significant degradation and corruption of target signature by atmospheric transmission and clutter effects. This paper summarizes our efforts in phenomenology modeling of boosting targets with IR sensors, and developing algorithms for tracking targets in the presence of background clutter. On the phenomenology modeling side, the clutter images are generated using a high fidelity end-to-end simulation testbed. It models atmospheric transmission, structured clutter and solar reflections to create realistic background images. The dynamics and intensity of a boosting target are modeled and injected onto the background scene. Pixel level images are then generated with respect to the sensor characteristics. On the tracking analysis side, a particle filter for tracking targets in a sequence of clutter images is developed. The particle filter is augmented with a mechanism to control particle flow. Specifically, velocity feedback is used to constrain and control the particles. The performance of the developed “adaptive” particle filter is verified with tracking of a boosting target in the presence of clutter and occlusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.