Abstract

Catalytic hydrogenolysis provides promising opportunities for the chemical recycling of polyolefins. In this study, we have successfully developed a novel catalyst consisting of ruthenium (Ru) nanoparticles supported on sodium titanate nanowires (Ru@NTO-NH) for the hydrogenolysis of low-density polyethylene (LDPE) into high-value long-chain alkanes under mild reaction conditions (180 °C, 1–2 MPa H2), achieving yields of up to 91%. Control experiments and thorough characterizations have elucidated that the exceptional catalytic performance of Ru@NTO-NH in the hydrogenolysis of polyolefins can be attributed to strong metal-support interactions (SMSI). NTO-NH exhibits stronger SMSI with Ru species than TiO2, leading to the formation of smaller Ru nanoparticles that are more positively charged and NaTiOx-overlayered. This unique configuration facilitates the adsorption and activation of H2 as well as the desorption of alkanes, thereby enhancing catalytic efficiency and selectivity towards liquid alkanes. Moreover, the Ru@NTO-NH catalyst demonstrates remarkable stability throughout recycling experiments (10 runs). Notably, apart from LDPE, high-density polyethylene (HDPE) and polypropylene (PP) can also be effectively converted into liquid alkanes through hydrogenolysis using this catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.