Abstract
This paper presents a numerical investigation of the performance of a rectangular storage solar collector with three different absorber plate shapes: smooth, parabolic, and triangular. The research employs three-dimensional, unsteady modeling using COMSOL software version 5.5 to simulate a solar storage collector system in Kufa-Najaf's climatic conditions. Two days in November and July were selected to evaluate the system's performance under various atmospheric conditions. The results showed that the highest water temperature for a no-load condition was 36.2 °C in November and 51.7 °C in July. For a triangular corrugation absorber storage collector under load, the largest temperature difference between the outflow and inflow temperatures was 14.9 °C at 1 p.m. and 11.9 °C at sunset in November, while the maximum temperature difference was 13.4 °C at 4 p.m. in July. The study also found that the total efficiency of the triangular corrugation absorber storage collector was higher than that of the other designs, and generally, the total efficiency under no-load conditions was lower than the load. The present work offers a novel solar storage collector configuration with a parabolic or triangular roughened integrated plate absorber, which enhances heat transfer, promoting energy efficiency and improving outlet water temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.