Abstract
Si is regarded as a promising photocathode material for solar hydrogen evolution reaction (HER) because of its small band gap and highly negative conduction band edge. However, bare Si electrodes have high overpotential because of sluggish HER kinetics on the surface. In this study, molybdenum tungsten sulfide (MoS2-WS2) was decorated on Si photocathodes as the co-catalyst to accelerate HER kinetics. The catalytic performance of MoS2-WS2 was further enhanced by introducing phosphate materials. Phosphate-modified molybdenum tungsten sulfide (PO-MoWS) was deposited on Si photoabsorbers to provide an optimal current of -15.0 mA cm-2 at 0 V. Joint characterizations of X-ray photoelectron and X-ray absorption spectroscopies demonstrated that the phosphate material dominantly coordinated with the WS2 component in PO-MoWS. Moreover, this phosphate material induced a large number of sulfur vacancies in the PO-MoWS/Si electrodes that contributed to the ideal catalytic activity. Herein, TiO2 thin films were prepared as the protective layer to improve the stability of photocathodes. The PO-MoWS/2 nm TiO2/Si electrode maintained 83.8% of the initial photocurrent after chronoamperometric measurement was performed for 8000 s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.