Abstract

Cost-effective sodium-ion batteries (SIBs) are the most promising candidate for grid-scale energy storage. However, the lack of suitable high-performance anode materials has hindered their large-scale applications. In this study, we report a multiscale design to optimize a TiO2-based anode from atomic, microstructural, and macrostructural levels. A key point in our design is the use of Co-doped amine-functionalized Ti-MOFs as multi-functional precursors, which not only achieves Co, N double-doping, and encapsulation of ultrafine TiO2 nanoparticles in mesoporous C frameworks, but also endows the precursors with positive surface charges, driving them to combine with graphene nanosheets into a 3D macroporous network architecture by self-assembly. The well-designed anode delivered high reversible capacities of 174 mA h g−1 at 6 C for over 5000 cycles, 121 mA h g−1 at 15 C for over 10,000 cycles, and 100 mA h g−1 at 30 C for over 3000 cycles, demonstrating the most efficient TiO2-based anode ever reported for SIBs. The unprecedented sodium storage performance is attributed to the multiscale integration yielding a high content of oxygen vacancies, 3D continuous conductive networks, and open diffusion channels, promoting both electron conduction and Na+ diffusion not only inside and around the TiO2 nanoparticles but also through overall electrode. The unique multiscale design based on MOF-derived strategy holds great potential in generalizable synthesis of versatile electrode materials for advanced battery systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.