Abstract
Online social networking platforms have become a popular channel of communications among people. However, most people can only keep in touch with a limited number of friends. This phenomenon results in a low-connectivity social network in terms of communications, which is inefficient for information propagation and social engagement. In this paper, we introduce a new recommendation service, called link revival, that suggests users to re-connect with their old friends, such that the resulted connection will improve the social network connectivity. To achieve high connectivity improvement under the dynamic social network evolvement, we propose a graph prediction-based recommendation strategy, which selects proper candidates based on the prediction of their future behaviors. We then develop an effective model that exploits non-homogeneous Poisson process and second-order self-similarity in prediction. Through comprehensive experimental studies on two real datasets (Phone Call Network and Facebook Wall-posts), we demonstrate that our proposed approach can significantly increase the social network connectivity, and that the approach outperforms other baseline solutions. The results also show that our solution is more suitable for online social networks like Facebook, partially due to the stronger long range dependency and lower communication costs in the interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.