Abstract

AbstractEthylene glycol is a useful organic compound and chemical intermediate for manufacturing various commodity chemicals of industrial importance. Nevertheless, the production of ethylene glycol in a green and safe manner is still a long‐standing challenge. Here, we established an integrated, efficient pathway for oxidizing ethylene into ethylene glycol. Mesoporous carbon catalyst produces H2O2, and titanium silicalite‐1 catalyst would subsequently oxidize ethylene into ethylene glycol with the in situ generated H2O2. This tandem route presents a remarkable activity, i.e., 86 % H2O2 conversion with 99 % ethylene glycol selectivity and 51.48 mmol gecat−1 h−1 production rate at 0.4 V vs. reversible hydrogen electrode. Apart from generated H2O2 as an oxidant, there exists ⋅OOH intermediate which could omit the step of absorbing and dissociating H2O2 over titanium silicalite‐1, showing faster reaction kinetics compared to the ex situ one. This work not only provides a new idea for yielding ethylene glycol but also demonstrates the superior of in situ generated H2O2 in tandem route.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.