Abstract
As one of the fundamental problems in document analysis, scene character recognition has attracted considerable interests in recent years. But the problem is still considered to be extremely challenging due to many uncontrollable factors including glyph transformation, blur, noisy background, uneven illumination, etc. In this paper, we propose a novel methodology for boosting scene character recognition by learning canonical forms of glyphs, based on the fact that characters appearing in scene images are all derived from their corresponding canonical forms. Our key observation is that more discriminative features can be learned by solving specially designed generative tasks compared to traditional classification-based feature learning frameworks. Specifically, we design a GAN-based model to make the learned deep feature of a given scene character capable of reconstructing corresponding glyphs in a number of standard font styles. In this manner, we obtain deep features for scene characters that are more discriminative in recognition and less sensitive against the above-mentioned factors. Our experiments conducted on several publicly available databases demonstrate the superiority of our method compared to the state of the art.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Document Analysis and Recognition (IJDAR)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.