Abstract

Recommender systems are promising for providing personalized favorite services. Collaborative filtering (CF) technologies, making prediction of users’ preference based on users’ previous behaviors, have become one of the most successful techniques to build modern recommender systems. Several challenging issues occur in previously proposed CF methods: 1) most CF methods ignore users’ response patterns and may yield biased parameter estimation and suboptimal performance; 2) some CF methods adopt heuristic weight settings, which lacks a systematical implementation; and 3) the multinomial mixture models may weaken the computational ability of matrix factorization for generating the data matrix, thus increasing the computational cost of training. To resolve these issues, we incorporate users’ response models into the probabilistic matrix factorization (PMF), a popular matrix factorization CF model, to establish the response aware probabilistic matrix factorization (RAPMF) framework. More specifically, we make the assumption on the user response as a Bernoulli distribution which is parameterized by the rating scores for the observed ratings while as a step function for the unobserved ratings. Moreover, we speed up the algorithm by a mini-batch implementation and a crafting scheduling policy. Finally, we design different experimental protocols and conduct systematical empirical evaluation on both synthetic and real-world datasets to demonstrate the merits of the proposed RAPMF and its mini-batch implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.