Abstract

Low output current represents a critical challenge that has interrupted the use of triboelectric nanogenerators (TNGs) in a wide range of applications as sustainable power sources. Many approaches (e.g., operation at high frequency, parallel stacks of individual devices, and hybridization with other energy harvesters) remain limited in solving the challenge of low output current from TNGs. Here, a nanocomposite material system having a superior surface charge density as a triboelectric active material is reported. The nanocomposite material consists of a high dielectric ceramic material, barium titanate, showing great charge‐trapping capability, together with a ferroelectric copolymer matrix, Poly(vinylidenefluoride‐co‐trifluoroethylene) (P(VDF‐TrFE)), with electrically manipulated polarization with strong triboelectric charge transfer characteristics. Based on a contact potential difference study showing that poled P(VDF‐TrFE) has 18 times higher charge attracting properties, a fraction between two components is optimized. Boosting power‐generating performance is achieved for 1130 V of output voltage and 1.5 mA of output current with this ferroelectric composite‐based TNG, under 6 kgf of pushing force at 5 Hz. An enormously faster charging property than traditional polymer film‐based TNGs is demonstrated in this study. Finally, the charging of a self‐powering smartwatch with a charging management circuit system with no external power sources is demonstrated successfully.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.