Abstract

Graph-based methods have exhibited exceptional performance in point cloud understanding by capturing local geometric relationships. However, existing approaches often struggle to characterize the overall spatial scale of local graphs. In addition, they fail to capture the differences between nodes effectively, which is crucial for distinguishing different classes. This study introduces SM-HFEGCN, a novel graph convolutional network that addresses these limitations through two key innovations: scale measurement and high-frequency enhancement. First, we introduce a spatial scale feature derived from the diagonal vectors of the neighborhood, which serves as a unique graph-specific property related to the geometry and density of the local point cloud. This feature can characterize the overall spatial scale of the local point cloud. Second, we enhance the high-frequency information to capture node variations and integrate it with smoothed information to represent the differences and similarities between nodes simultaneously. Extensive experiments demonstrate the effectiveness of SM-HFEGCN in point cloud classification and segmentation tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.