Abstract
The development of a stable and highly active photocatalyst has garnered significant attention in the field of wastewater treatment. In this study, a novel technique involving a facile stirring method was devised to fabricate an array of g-C3N4/ZnO nanowire (ZnO NW) composites. Through the introduction of g-C3N4 to augment the generation of electron-hole pairs upon exposure to light, the catalytic efficacy of these composites was found to surpass that of the pristine ZnO NWs when subjected to simulated sunlight. The photocatalytic performance of a 20 mg·L-1 methylene blue solution was found to be highest when the doping rate was 25 wt%, resulting in a degradation rate of 99.1% after 60 min. The remarkable enhancement in catalytic efficiency can be ascribed to the emergence of a captivating hetero-junction at the interface of g-C3N4 and ZnO NWs, characterized by a harmoniously aligned band structure. This alluring arrangement effectively curtailed charge carrier recombination, amplified light absorption, and augmented the distinct surface area, culminating in a notable boost to the photocatalytic prowess. These findings suggest that the strategic engineering of g-C3N4/ZnO NW heterostructures holds tremendous promise as a pioneering avenue for enhancing the efficacy of wastewater treatment methodologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.