Abstract

The construction of CN/UiO-67 (CNU) S-scheme heterojunction composites through in situ formation of UiO-67 on carbon nitride (C3N4) helps to address the limitations of carbon nitride (CN) in photocatalytic NO elimination. The optimized CNU3 demonstrates superior photocatalytic efficiency, which is attributed to electronic channels constructed by Zr-N bonds and S-scheme electron transport mechanism, effectively promoting the efficient separation of photogenerated charge carriers with high redox potentials. Density Functional Theory (DFT) calculations reveal redistributed electronic orbitals in CNU3, with progressive and continuous energy levels near the Fermi level, which bolsters electronic conduction. Comprehensive quenching experiments, Electron Paramagnetic Resonance (EPR), and in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) analyses highlight a synergistic interplay of electrons, holes, and superoxide radicals in CNU3, inhibiting the generation of toxic nitrogen oxide intermediates and culminating in highly efficient photocatalytic NO oxidation. This study not only elucidates the mechanisms underpinning the enhanced performance of CNU3 heterojunctions but also offers new perspectives on the preparation and interfacial charge separation of heterojunction photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.