Abstract

Solution-processed perovskite light-emitting diodes (LEDs) have attracted wide attention in the past several years. However, the overall efficiency and stability of perovskite-based LEDs remain inferior to those of organic or quantum dot LEDs. Nonradiative charge recombination and the unbalanced charge injection are two critical factors that limit the device efficiency and operational stability of perovskite LEDs. Here, we develop a strategy to modify the interface between the hole transport layer and the perovskite emissive layer with an amphiphilic conjugated polymer of poly[(9,9-bis(3'-( N, N-dimethylamino)propyl)-2,7-fluorene)- alt-2,7-(9,9-dioctylfluorene)] (PFN). We show evidences that PFN improves the quality of the perovskite film, which effectively suppresses nonradiative recombination. By further improving the charge injection balance rate, a green perovskite LED with a champion current efficiency of 45.2 cd/A, corresponding to an external quantum efficiency of 14.4%, is achieved. In addition, the device based on the PFN layer exhibits improved operational lifetime. Our work paves a facile way for the development of efficient and stable perovskite LEDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call