Abstract
Solution-processed perovskite light-emitting diodes (LEDs) have attracted wide attention in the past several years. However, the overall efficiency and stability of perovskite-based LEDs remain inferior to those of organic or quantum dot LEDs. Nonradiative charge recombination and the unbalanced charge injection are two critical factors that limit the device efficiency and operational stability of perovskite LEDs. Here, we develop a strategy to modify the interface between the hole transport layer and the perovskite emissive layer with an amphiphilic conjugated polymer of poly[(9,9-bis(3'-( N, N-dimethylamino)propyl)-2,7-fluorene)- alt-2,7-(9,9-dioctylfluorene)] (PFN). We show evidences that PFN improves the quality of the perovskite film, which effectively suppresses nonradiative recombination. By further improving the charge injection balance rate, a green perovskite LED with a champion current efficiency of 45.2 cd/A, corresponding to an external quantum efficiency of 14.4%, is achieved. In addition, the device based on the PFN layer exhibits improved operational lifetime. Our work paves a facile way for the development of efficient and stable perovskite LEDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.