Abstract
Nickel-iron-based layered double hydroxides (NiFe-LDHs) are promising catalysts for the oxygen evolution reaction (OER) because of their high activity, availability, and low cost. Defect engineering, particularly the formation of oxygen vacancies, can improve the catalytic activity of NiFe-LDHs. However, the controllable introduction of uniform oxygen vacancies remains challenging. Herein, an n-butyllithium treatment method is developed to tune oxygen vacancy defects and change the degree of amorphization in NiFe-LDHs via deep reduction, followed by partial oxidization at low temperatures. Interestingly, the Ni in the NiFe-LDHs is selectively reduced to the alloy state by n-butyllithium, whereas Fe is not. The different structural transformations of Ni and Fe during the treatment successfully produce an oxygen-defect-rich amorphous/crystalline electrocatalyst. Under optimal conditions, the treated NiFe-LDHs exhibit high OER activity with an overpotential of 223 mV at 10 mA cm-2 (68 mV lower than that of a commercial IrO2 electrocatalyst) and long-term stability. Notably, the n-butyllithium treatment can be applied to other electrocatalysts, such as CoFe-LDHs and IrO2 (treated IrO2 with an overpotential of 197 mV at 10 mA cm-2). This n-butyllithium reduction/partial oxidization treatment constitutes a novel top-down strategy for the controllable modification of metal oxide structures, with various energy-related applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.