Abstract

Introducing alien intercalations to sub-nanometer scale nanochannels is one desirable strategy to optimize the ion transportation of two-dimensional nanomaterial membranes for improving osmotic energy harvest (OEH). Diverse intercalating agents have been previously utilized to realize this goal in OEH, but with modest performance, complex operations, and physicochemical uncertainty gain. Here, we employ the self-exfoliation behavior of oxidative fragments (OFs) from graphene oxide basal plane under an alkaline environment to encapsulate detached OFs in nanochannels for breaking a trade-off between permeability and selectivity, boosting power density from 1.8 to 4.9 W m-2 with a cation selectivity of 0.9 and revealing a negligible decline in power density and trade-off during a long-term operation test (∼168 h). The strategy of membrane design, employing the intrinsically self-exfoliated OFs to decorate the nanochannels, provides an alternative and facile approach for ion separation, OEH, and other nano-fluidic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.