Abstract

Nitrous oxide (N2O) has a detrimental impact on the greenhouse effect, and its efficient catalytic decomposition at low temperatures remains challenging. Herein, the cobalt-based high-entropy oxide with a spinel-type structure (Co-HEO) is successfully fabricated via a facile coprecipitation method for N2O catalytic decomposition. The obtained Co-HEO catalyst displays more remarkable catalytic performance and higher thermal stability compared with single and binary Co-based oxides, as the temperature of 90% N2O decomposition (T90) is 356 °C. A series of characterization results reveal that the synergistic effect of multiple elements enhances the reducibility and augments oxygen vacancy in the high-entropy system, thus boosting the activity of the Co-HEO catalyst. Moreover, density functional theory (DFT) calculations and the temperature-programmed surface reaction (TPSR) with isotope labeling demonstrate that N2O decomposition on the Co-HEO catalyst follows the Langmuir-Hinshelwood (L-H) mechanism with the promotion of abundant oxygen vacancies. This work provides a fundamental understanding of the synergistic catalytic effect in N2O decomposition and paves the way for the novel environmental catalytic applications of HEO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.