Abstract
Strong metal-support interaction is crucial to the stability of catalysts in heterogeneous catalysis. However, reports on boosting interfacial electron transfer between metal and support via defect induction for enhanced metal-support interaction are limited. In this work, ultrathin reducible ZnTi-layered double hydroxide (LDH) nanosheets with rich oxygen defects were synthesized to stabilize Pd clusters, and the rich oxygen defects promoted Pd cluster bonding with Zn and Ti atoms in supports, thereby forming a metal-metal bond. Electron spin resonance (ESR), X-ray absorption fine spectra (XAFS), and density functional theory (DFT) calculations demonstrate remarkable interfacial electron transfer (0.62 e). The Pd/ZnTi-LDH catalyst shows superior catalytic stability for CO direct esterification to dimethyl oxalate. By contrast, the nonreducible Pd/ZnAl-LDH catalyst with a few oxygen defects shows minimal interfacial electron transfer (0.08 e), which leads to relatively poor catalytic stability. This work provides a deep insight into promoting the stability of catalysts by boosting interfacial electron transfer via defect induction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.