Abstract

Nonparametric maximum likelihood estimation is intended to infer the unknown density distribution while making as few assumptions as possible. To alleviate the over parameterization in nonparametric data fitting, smoothing assumptions are usually merged into the estimation. In this paper a novel boosting-based method is introduced to the nonparametric estimation in univariate cases. We deduce the boosting algorithm by the second-order approximation of nonparametric log-likelihood. Gaussian kernel and smooth spline are chosen as weak learners in boosting to satisfy the smoothing assumptions. Simulations and real data experiments demonstrate the efficacy of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.