Abstract

Rhodospirillum rubrum is a photosynthetic purple non-sulphur bacterium with great potential to be used for complex waste valorisation in biotechnological applications due to its metabolic versatility. This study investigates the production of hydrogen (H2) and polyhydroxyalkanoates (PHA) by R. rubrum from syngas under photoheterotrophic conditions. An adaptive laboratory evolution strategy (ALE) has been carried out to improve the yield of the process. After 200 generations, two evolved strains were selected that showed reduced lag phase and enhanced poly-3-hydroxybutyrate (PHB) and H2 synthesis compared to the parental strain. Genomic analysis of the photo-adapted (PA) variants showed four genes with single point mutations, including the photosynthesis gene expression regulator PpsR. The proteome of the variants suggested that the adapted variants overproduced H2 due to a more efficient CO oxidation through the CO-dehydrogenase enzyme complex and confirmed that energy acquisition was enhanced through overexpression of the photosynthetic system and metal cofactors essential for pigment biosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.