Abstract

Adsorption technology based on ethane-selective materials is a promising alternative to energy-intensive cryogenic distillation for separating ethane (C2 H6 ) and ethylene (C2 H4 ). We employed a pore engineering strategy to tune the pore environment of a metal-organic framework (MOF) through organic functional groups and boosted the C2 H6 /C2 H4 separation of the MOF. Introduction of amino (-NH2 ) groups into Tb-MOF-76 not only decreased pore sizes but also facilitated multiple guest-host interactions in confined pores. The NH2 -functionalized Tb-MOF-76(NH2 ) has increased C2 H6 and C2 H4 uptakes and C2 H6 /C2 H4 selectivity. The results of experimental and simulated transient breakthroughs reveal that Tb-MOF-76(NH2 ) has significantly improved one-step separation performance for C2 H6 /C2 H4 mixtures with a high C2 H4 (>99.95 %) productivity of 17.66 L kg-1 compared to 7.53 L kg-1 by Tb-MOF-76, resulting from the suitable pore confinement and accessible -NH2 groups on pore surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call