Abstract

In the present study, the antibacterial effect of graphitic carbon nitride coated on the red ocher was investigated by the photocatalytic process to remove Gram-negative Escherichia coli bacteria. The concentration effects (0.025, 0.05, and 0.1 g/mL) of disinfectant, contact time (30, 60, and 90 min), and the number of bacteria (102, 104, and 106 CFU/mL) were examined. In this research, in each experiment, 100 mL of the sample was taken, and the test work was performed. The red ocher required for this project was obtained from Hormoz Island, Hormozgan Province, Iran. Melamine was used for the synthesis and manufacture of graphitic carbon nitride. A general-purpose media was used for microbial culture using the pour and spread plate methods, as well as an LED lamp with a wavelength of 420 nm as a light source for the photocatalytic process. To obtain the important factors, the interaction of the factors and the optimal experimental design were used through the response surface methodology (RSM) based on the Box-Behnken design. According to research findings, this method is effective in eliminating E. coli. The results showed that the increase in the amount of disinfectant from 0.025 to 0.1 g/mL and also the increase of contact time from 30 to 90 min accelerated the removal rate of E. coli. The numerical value of R2 obtained for the removal of E. coli was 0.9728, indicating good agreement between experimental and predicted data. Therefore, its utilization in water disinfection seems necessary, both to ensure human health and environmental protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call