Abstract

The practical deployment of promising NiFe-based oxygen evolution reaction (OER) electrocatalysts is heavily limited due to the constrain in both stability and activity under industrial conditions. Herein, a 3D free-standing NiFe(oxy)hydroxide-based electrode with Schottky junction is constructed, in which NiFe(oxy)hydroxide (NiFe(OH)x ) nanosheets are chemically assembled on the top of metal-like Ni3 S2 scaffold that are in situ formed on commercial Ni mesh. Such an assembly enhances the binding strength of each components, promotes the charge transfer across the interfaces, and modulates the electronic and nanostructural features of NiFe(OH)x . Consequently, the electrode delivers current densities of as high as 500 and 1000mA cm-2 for OER at overpotentials of only 248 and 270mV with long-term stability in 1 m KOH. When it was paired with a NiMo hydrogen evolution cathode in a practical two-electrode system, a current density of 1000mA cm-2 is achieved at a low cell voltage of ≈1.61V at 80°C in 30% KOH without losing performance for at least 1500 h. This is the best performance reported thus far for alkaline water electrolysis under industrial conditions, demonstrating its great potential for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.