Abstract

Layered nickel-iron oxide/hydroxide nanosheets have proven to be the most efficient catalyst for the water oxidation reaction. Introducing structural defects to the nanosheets is a particularly attractive method for increasing the number of active sites and tailoring the intrinsic electronic properties. Herein, defects were introduced on Ni-Fe nanosheets through sequentially electrodoping and dedoping the surface of the material with tetramethylammonium ions. The as-prepared defect-rich Ni-Fe nanosheets showed an enhanced catalytic performance for the oxygen evolution reaction (OER) compared with conventional NiFe layered double hydroxides (LDHs), exhibiting an overpotential of only 172 mV at the current density of 10 mA cm-2 . The relationship between pH and OER activity indicated that the lattice oxygens participated in the catalytic OER process as active sites. This work provides new insights into the understanding of the structure-activity relationship of layered materials and helps to develop new methods to implement defects on such frameworks aided by organic molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.