Abstract
Quantum reservoir computing provides a framework for exploiting the natural dynamics of quantum systems as a computational resource. It can implement real-time signal processing and solve temporal machine learning problems in general, which requires memory and nonlinear mapping of the recent input stream using the quantum dynamics in computational supremacy region, where the classical simulation of the system is intractable. A nuclear magnetic resonance spin-ensemble system is one of the realistic candidates for such physical implementations, which is currently available in laboratories. In this paper, considering these realistic experimental constraints for implementing the framework, we introduce a scheme, which we call a spatial multiplexing technique, to effectively boost the computational power of the platform. This technique exploits disjoint dynamics, which originate from multiple different quantum systems driven by common input streams in parallel. Accordingly, unlike designing a single large quantum system to increase the number of qubits for computational nodes, it is possible to prepare a huge number of qubits from multiple but small quantum systems, which are operationally easy to handle in laboratory experiments. We numerically demonstrate the effectiveness of the technique using several benchmark tasks and quantitatively investigate its specifications, range of validity, and limitations in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.