Abstract

CO tolerance and stability are of prominent importance for the anodic electrocatalyst utilized in direct methanol fuel cells (DMFCs). Due to the electrochemical instability of Ru atoms, the state-of-the-art DMFC anodic electrocatalyst (PtRu/C) is unable to survive for long time. Here, we report a newly designed Pt electrocatalyst with robust CO tolerance and stability after coating with poly(vinyl pyrrolidone) (PVP). Electrochemically active surface area (ESA) is negligibly affected by the PVP decoration; meanwhile, almost undetectable ESA loss is obtained for the PVP decorated Pt electrocatalyst. However, the ESA degradations for non-decorated and commercial CB/Pt electrocatalysts are found to be 30% and 40%, respectively. The improved stability is ascribed to the strong interaction between PVP and sulfonated carbon nanotubes. Also, the CO tolerance evaluated from the methanol oxidation reaction is ∼3 and 3.5 fold higher compared to non-decorated and commercial CB/Pt electrocatalysts, respectively, which is attributed to the hydrophilic PVP polymer accelerating the water absorption and formation of Pt(OH)ads species to re-activate nearby CO poisoned Pt nanoparticles. Thus, decoration with PVP polymer can simultaneously promote the stability and CO anti-poisoning of Pt electrocatalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.