Abstract

The ability to regulate charge separation is pivotal for obtaining high efficiency of any photoelectrode used for solar fuel production. Vacancy engineering for metal oxide semiconductor photoelectrode is a major strategy but has faced a formidable challenge in bulk charge transport because of the elusive charge self-trapping site. In this work, a new deep eutectic solvent to engineer bismuth vacancies (Bivac ) of BiVO4 photoanode is reported; the novel Bivac can remarkably increase the charge diffusion coefficient by 5.8times (from 1.82 × 10-7 to 1.06 × 10-6 cm2 s-1 ), which boosts the charge transport efficiency. Through further loading CoBi cocatalyst to enhance charge transfer efficiency, the photocurrent density of BiVO4 photoanode with optimal Bivac concentration reaches 4.5 mA cm-2 at 1.23 V vs reversible hydrogen electrode under AM 1.5 G illumination, which is higher than that of previously reported Ovac engineered BiVO4 photoanode where the BiVO4 photoanode is synthesized by a similar procedure. This work perfects a cation defect engineering that enables the potential capability to equate the charge transport properties in different types of semiconductor materials for solar fuel conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.