Abstract

Although the high energy density and environmental benignancy of LiNi0.8 Co0.15 Al0.05 O2 (NCA) holds promise for use as cathode material in Li-ion batteries, present low rate capabilities, and fast capacity fade limit its broad commercial applications. Here, it is reported that surface modification of NCA cathode (R-3m) with 5 nm-thick nanopillar layers and Fm-3m structures significantly improves electrode structure, morphology, and electrochemical performance. The formation of nanopillar layers increases cycling and working voltage stability of NCA by shielding the host material from hydrofluoric acid and improves structural stability with the electrolyte. The modified NCA cathode exhibits an enhanced 89% capacity retention at a rate of 1 C over that of pristine NCA (75.2%) after 150 cycles and effectively suppresses working voltage fade (a drop of 0.025 V after 300 cycles) during repeated charge-discharge cycles. In addition, the diffusion barrier of Li ions in NCA crystals at 0.80 V is noticeably smaller than that of Li ions in pristine NCA (0.87 eV). These findings demonstrate that this unique surface structure design considerably enhances cycle and rate performance of NCA, which has potential applications in other Ni-rich layered cathode materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.