Abstract

Direct methanol fuel cell (DMFC) is hampered by the sluggish methanol oxidation reaction. In this work, we have invited rhodium phosphides (Rh2P) to platinum (Pt) as robust MOR electrocatalyst ascribing the excellent water dissociation capability of Rh2P to generate Pt(OH)ads species to mitigate the CO poisoning. MOR mass activity of Rh2P-Pt/C is enhanced by 2- and 3.5-time with relative to commercial Pt/C and PtRu/C, respectively; additionally, the CO anti-poisoning ability is also boosted by 2.4 folds than Pt/C. The in-situ electrochemical impedance spectroscopy test reveals that the water dissociation is accelerated by Rh2P; moreover, the mutual electronic interplay between Pt and Rh2P contributes to a superior resistance towards electrochemical dissolution and coalescence. The theoretical investigation also indicates that d band center of Pt in Rh2P-Pt is downshifted resulting in a lower CO binding strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call