Abstract

An increasing number of cancer patients have found new hope in the form of recently discovered cell immunotherapies. These novel treatments empower our own immune system to fight and eradicate the malignant tumours, even in metastatic stages. Unprecedented outcomes have been demonstrated with bioengineered cells especially modified in laboratories to trigger a highly specific and active anti-tumour function; however, a main bottleneck for the implementation of these promising therapies resides in the old-fashioned and limited techniques employed for the in vitroanalysis and study of cells during manufacturing and testing processes. Optical label-free biosensors are currently arising as promising analytical technologies for a simplified and accurate cell analysis. In particular, biosensors based on evanescent field principles enable direct, non-invasive, and real-time monitoring of biological events, showing outstanding sensitivities and excellent robustness. Furthermore, these biosensors are easily incorporated in lab-on-a-chip platforms for simple operation and implementation in clinical laboratories. In this review, the authors present and discuss the more recent research aimed to develop label-free optical biosensors for the analysis of live cells and the direct benefits offered to cell immunotherapy production allowing for its widespread implementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call