Abstract
The increasing number of scientific research documents published keeps growing at an unprecedented rate, making it increasingly difficult to access practical information within a target domain. This situation is motivating a growing interest in applying text mining techniques for the automatic processing of text resources to structure the information that helps researchers to find information of interest and infer knowledge of practical use. However, the automatic processing of research documents requires the previous existence of large, manually annotated text corpora to develop robust and accurate text mining processing methods and machine learning models. In this context, semi-automatic extraction techniques based on structured data and state-of-the-art biomedical tools appear to have significant potential to enhance curator productivity and reduce the costs of document curation. In this line, this work proposes a semi-automatic machine learning workflow and a NER + Ontology boosting technique for the automatic classification of biomedical literature. The practical relevance of the proposed approach has been proven in the curation of 4,115 gluten-related documents extracted from PubMed and contrasted against the word embedding alternative. Comparing the results of the experiments, the proposed NER + Ontology technique is an effective alternative to other state-of-the-art document representation techniques to process the existing biomedical literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.