Abstract

Anode performance has been regarded as a crucial factor determining long-term stability and electricity generation of microbial fuel cells (MFCs), which restricts by the difficult extracellular electron transfer (EET) on the microbe/anode interface. Herein, inspired by biological enzyme systems, this study synthesized the biomimetic nanozymes with Fe-N-S-C active sites as the anode materials of MFCs, which was similar to the hemes of c-type cytochromes (c-Cyts) for boosting EET process. As excepted, an obviously faster start-up and a much higher power density were achieved by the MFCs equipped with Fe-N-S-C nanozymes (startup time, 3.5 d; power density, 2366 ± 34 mW m−2) than that based on traditional carbon cloth (startup time, 5.6 d; power density, 1009 ± 26 mW m−2). Such unique features of Fe-N-S-C nanozymes anode not only greatly favored the bacterial adhesion and the electroactive bacteria enrichment on the anode surface, but also efficiently facilitated the EET process between the electroactive bacteria and anode surface. This study provided a feasible strategy for designing the novel MFC anode materials from the perspective of bionic enzyme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call