Abstract

Renewable energy sources offer greater reliability and resilience compared to traditional sources. Biodiesel, derived from renewable resources that absorb carbon dioxide during growth and production, boasts a significantly lower carbon footprint than petroleum-based diesel fuel. Heterojunction photocatalysts have emerged as a promising solution for environmental challenges. This study focused on efficient biodiesel production using visible light-irradiated Si/MgO heterojunctions. The XPS analysis confirmed the crucial role of surface functionality in achieving high photocatalytic efficiency. Transesterification occurs through SiH and SiOH bond formation on the catalyst. Finite-difference time-domain (FDTD) predicts the structure–activity relationship, showing stronger plasmonic nearfields in Si/MgO due to distinct dielectric constants. The Si/MgO photocatalyst exhibited superior photocatalytic activity under visible light, consistent with FDTD results. Biodiesel production was attained to 96% yield using 2 wt% catalysts, a 12:1 M ratio of methanol to Jatropha curcas oil, and a 3.5 hrs reaction time. Therefore, the work provided valuable insights into the mechanism of efficient plasmonic photocatalysis, paving the way for future advancements in novel high-performance photocatalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call