Abstract
In the past, the design of efficient electrocatalyst materials for alkaline hydrogen evolution reaction (HER) was mostly focused on tuning the adsorption properties of reaction intermediates. A recent breakthrough shows that the performance can be improved by manipulating water structure at the electrode-electrolyte interface using atomically localized electric fields. The new approach was realized by using IrRu dizygotic single-atom sites and led to a significantly accelerated water dissociation and an overall improved alkaline HER performance. Supported by extensive data from advanced modeling, characterization, and electrochemical measurements, the work delivers an intricate examination of the interaction between water molecules and the catalyst surface, thereby enriching our understanding of water dissociation kinetics and offering new insights to boost overall alkaline HER efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.