Abstract

Traditionally, supervised machine learning (ML) algorithms rely heavily on large sets of annotated data. This is especially true for deep learning (DL) neural networks, which need huge annotated data sets for good performance. However, large volumes of annotated data are not always readily available. In addition, some of the best performing ML and DL algorithms lack explainability – it is often difficult even for domain experts to interpret the results. This is an important consideration especially in safety-critical applications, such as AI-assisted medical endeavors, in which a DL’s failure mode is not well understood. This lack of explainability also increases the risk of malicious attacks by adversarial actors because these actions can become obscured in the decision-making process that lacks transparency. This paper describes an intensional learning approach which uses boosting to enhance prediction performance while minimizing reliance on availability of annotated data. The intensional information is derived from an unsupervised learning preprocessing step involving clustering. Preliminary evaluation on the MNIST data set has shown encouraging results. Specifically, using the proposed approach, it is now possible to achieve similar accuracy result as extensional learning alone while using only a small fraction of the original training data set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.