Abstract
The sine cosine algorithm (SCA) was proposed for solving optimization tasks, of which the way to obtain the optimal solution is mainly through the continuous iteration of the sine and cosine update formulas. However, SCA also faces low population diversity and stagnation of locally optimal solutions. Hence, we try to eliminate these problems by proposing an enhanced version of SCA, named ESCA_PSO. ESCA_PSO is proposed based on hybrid SCA and particle swarm optimization (PSO) by incorporating multiple mutation strategies into the original SCA_PSO. To validate the effect of ESCA_PSO in handling global optimization problems, ESCA_PSO was compared with quality algorithms on various types of benchmark functions. In addition, the proposed ESCA_PSO was employed to tune the best parameters of support vector machines for dealing with medical diagnosis tasks. The results prove the efficiency of the proposed algorithms in solving optimization problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and mathematical methods in medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.