Abstract

We present a self-interacting boosted dark matter (DM) scenario as a possible explanation of the recently reported excess of electron recoil events by the XENON1T experiment. The Standard Model (SM) has been extended with two vector-like fermion singlets charged under a dark U(1)D gauge symmetry to describe the dark sector. While the presence of light vector boson mediator leads to sufficient DM self-interactions to address the small scale issues of cold dark matter, the model with sub-GeV scale DM can explain the XENON1T excess via elastic scattering of boosted DM component with electrons at the detector. Strong annihilation of DM into the light mediator leads to a suppressed thermal relic. A hybrid setup of dark freeze-out and non-thermal contribution from the late decay of a scalar can lead to correct relic abundance. We fit our model with XENON1T data and also find the final parameter space consistent with self-interaction of DM, DM-electron scattering rate, as well as astrophysical and cosmological observations. A tiny parameter space consistent with all these constraints and requirements can be further scrutinized in near-future experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.