Abstract

Cations such as divalent magnesium ion (Mg2+ ) play an essential role in DNA self-assembly. However, the strong electrostatic shielding effect of Mg2+ would be disadvantageous in some situations that require relatively weak interactions to allow a highly reversible error-correcting mechanism in the process of assembly. Herein, by substituting the conventional divalent Mg2+ with monovalent sodium ion (Na+ ), we have achieved one-pot high-yield assembly of tile-based DNA polyhedra at micromolar concentration of tiles, at least 10 times higher than the DNA concentrations reported previously. This strategy takes advantage of coexisting counterions and is expected to surmount the major obstacle to potential applications of such DNA nanostructures: large-scale production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.