Abstract
In this work, urchin-like structured hydroxyapatite-incorporated nickel magnetite (NiFe3O4/UHdA) microspheres were developed for the efficient removal of micropollutants (MPs) via peroxydisulfate (PDS) activation. The prepared NiFe3O4/UHdA degraded 99.0 % of sulfamethoxazole (SMX) after 15 min in 2 mM PDS, having a first-order kinetic rate constant of 0.210 min−1. In addition, NiFe3O4/UHdA outperformed its counterparts, i.e., Fe3O4/UHdA and Ni/UHdA, by giving rise to corresponding 3.6-fold and 8.6-fold enhancements in the SMX removal rate. The outstanding catalytic performance can be ascribed to (1) the urchin-like mesoporous structure with a large specific surface area and (2) the remarkable synergistic effect caused by the redox cycle of Ni3+/Ni2+ and Fe2+/Fe3+ that enhances multipath electron transfers on the surface of NiFe3O4/UHdA to produce more reactive oxygen species. Moreover, the effects of several reaction parameters, in this case the initial solution pH, PDS dosage, SMX concentration, catalyst loading, co-existing MPs and humic acid level on the catalytic performance of the NiFe3O4/UHdA + PDS system were systematically investigated and discussed in detail. The plausible catalytic mechanisms in the NiFe3O4/UHdA + PDS system were revealed via scavenging experiments and electron paramagnetic resonance analysis, which indicated a radical (•OH and SO4•−) as the major pathway and a nonradical (1O2) as the minor pathway for SMX degradation. Furthermore, NiFe3O4/UHdA exhibited fantastic magnetically separation and retained good catalytic activity with a low leached ion concentration during the performance of four cycles. Overall, the prepared NiFe3O4/UHdA with outstanding PDS activation could be a promising choice for the degradation of persistent organic pollutants from wastewater.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.