Abstract

The selective photocatalytic conversion of CO2 and H2O to high value-added C2H4 remains a great challenge, mainly attributed to the difficulties in C-C coupling of reaction intermediates and desorption of C2H4* intermediates from the catalyst surface. These two key issues can be simultaneously overcome by alloying Ag with Cu which gives enhanced activity to both reactions. Herein, we developed a facile stepwise photodeposition strategy to load Cu-Ag alloy sub-nanoclusters (ASNCs) on TiO2 for CO2 photoreduction to produce C2H4. The optimized catalyst exhibits a record-high C2H4 formation rate (1110.6 ± 82.5 μmol g-1 h-1) with selectivity of 49.1 ± 1.9%, which is an order-of-magnitude enhancement relative to current work for C2H4 photosynthesis. The in situ FT-IR spectra combined with DFT calculations reveal the synergistic effect of Cu and Ag in Cu-Ag ASNCs, which enable an excellent C-C coupling capability like Ag and promoted C2H4* desorption property like Cu, thus advancing the selective and efficient production of C2H4. The present work provides a deeper understanding on cluster chemistry and C-C coupling mechanism for CO2 reduction on ASNCs and develops a feasible strategy for photoreduction CO2 to C2 fuels or industrial feedstocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call