Abstract

AbstractCircularly polarized luminescence (CPL)‐active molecular materials have drawn increasing attention due to their promising applications for next‐generation display and optoelectronic technologies. Currently, it is challenging to obtain CPL materials with both large luminescence dissymmetry factor (glum) and high quantum yield (Φ). A pair of enantiomeric N N C‐type Pt(II) complexes (L/D)‐1 modified with chiral Leucine methyl ester are presented herein. Though the solutions of these complexes are CPL‐inactive, the spin‐coated thin films of (L/D)‐1 exhibit giantly‐amplified circularly polarized phosphorescences with |glum| of 0.53 at 560 nm and Φair of ~50 %, as well as appealing circular dichroism (CD) signals with the maximum absorption dissymmetry factor |gabs| of 0.37–0.43 at 480 nm. This superior CPL performance benefits from the hierarchical formation of crystalline fibrillar networks upon spin coating. Comparative studies of another pair of chiral Pt(II) complexes (L/D)‐2 with a symmetric N C N coordination mode suggest that the asymmetric N N C coordination of (L/D)‐1 are favorable for the efficient exciton delocalization to amplify the CPL performance. Optical applications of the thin films of (L/D)‐1 in CPL‐contrast imaging and inducing CP light generation from achiral emitters and common light‐emitting diode lamps have been successfully realized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call