Abstract

This paper investigates the behaviors of Boost DC Chopper used in Photovoltaic energy systems where the solar irradiation changes during the day time causing current and voltage changes. Varying the solar irradiation causes output chopper voltage changes in order to keep working at maximum extracted solar power. The chopper voltage changes leading to variable duty cycle operation of chopper switch and causes a significant change in switch losses in terms of the dissipated power. In addition to that the chopper behaviors are studied when the chopper voltage is boosting up to a predetermined reference value leading to a significant change in chopper current, voltage, duty cycle and occurred losses. A mathematical model for chopper performances and switch losses is derived, and a simulation model using Matlab/ Simulink platforms is conducted to follow the chopper behaviors. Simulation results for concreteSUNPOWER panel type SPR-315E-WHT-D with 315 Watts peak indicates that during the daylight time transistors are exposed to complicated changes in their current, voltage and dissipated power. Furthermore changing the output voltage according to load requirements causes heavy stress on the transistor in terms of current, oscillations and losses as well. Simulation results show that there are optimized values of irradiation, chopper voltage and duty cycle where the transistor losses are minimized. In addition to that, projecting the transistor losses over the daylight time at a given irradiation rate shows how these losses vary among the year, and the amount of energy dissipated across the main chopper switch which is around 2970 Whr/yr for the present case. Furthermore, the conducted simulation also shows the occurred in the transistor behaviors when solar irradiation changes, and can be serving for further studies.

Highlights

  • Photovoltaic power is considered as a promised source for present and future generations aiming at reducing the gas emissions causes by conventional energy sources such as fossil and cool sources [1]

  • This paper investigates the behaviors of Boost DC Chopper used in Photovoltaic energy systems where the solar irradiation changes during the day time causing current and voltage changes

  • The chopper voltage changes leading to variable duty cycle operation of chopper switch and causes a significant change in switch losses in terms of the dissipated power

Read more

Summary

Introduction

Photovoltaic power is considered as a promised source for present and future generations aiming at reducing the gas emissions causes by conventional energy sources such as fossil and cool sources [1]. AS well know photovoltaic systems consist of photovoltaic source (PV), dc to dc converter that can be boost or buck boost chopper, dc link and filter, dc to ac converter (inverter) that can be single or multiphase voltage source or current source inverter, and output AC filter that can be C, LC, CL, and CLC filter [4] [5]. In the photovoltaic solar system the most used choppers are either boost or buck-boost in order to vary the voltage to be at the maximum power point by varying the operation time of the chopper switch throughout varying the duty cycle [5]. The occurred losses vary significantly as the irradiation level changes during the day time, and that varies seasonally, optimized chopper’s configuration could be a subject for further investigations

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.