Abstract

Driven by the need to solve linear systems arising from problems posed on extremely large, unstructured grids, there has been a recent resurgence of interest in algebraic multigrid (AMG). AMG is attractive in that it holds out the possibility of multigrid-like performance on unstructured grids. The sheer size of many modern physics and simulation problems has led to the development of massively parallel computers, and has sparked much research into developing algorithms for them. Parallelizing AMG is a difficult task, however. While much of the AMG method parallelizes readily, the process of coarse-grid selection, in particular, is fundamentally sequential in nature. We have previously introduced a parallel algorithm [A.J. Cleary, R.D. Falgout, V.E. Henson, J.E. Jones, in: Proceedings of the Fifth International Symposium on Solving Irregularly Structured Problems in Parallel, Springer, New York, 1998] for the selection of coarse-grid points, based on modifications of certain parallel independent set algorithms and the application of heuristics designed to insure the quality of the coarse grids, and shown results from a prototype serial version of the algorithm. In this paper we describe an implementation of a parallel AMG code, using the algorithm of A.J. Cleary, R.D. Falgout, V.E. Henson, J.E. Jones [in: Proceedings of the Fifth International Symposium on Solving Irregularly Structured Problems in Parallel, Springer, New York, 1998] as well as other approaches to parallelizing the coarse-grid selection. We consider three basic coarsening schemes and certain modifications to the basic schemes, designed to address specific performance issues. We present numerical results for a broad range of problem sizes and descriptions, and draw conclusions regarding the efficacy of the method. Finally, we indicate the current directions of the research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.