Abstract

Arithmetic operations on matrices are applied to the problem of finding the transitive closure of a Boolean matrix. The best transitive closure algorithm known, due to Munro, is based on the matrix multiplication method of Strassen. We show that his method requires at most O(n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">α</sup> · P(n)) bitwise operations, where α = log <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> 7 and P(n) bounds the number of bitwise operations needed for arithmetic modulo n+1. The problems of computing the transitive closure and of computing the "and-or" product of Boolean matrices are shown to be of the same order of difficulty. A transitive closure method based on matrix inverse is presented which can be used to derive Munro's method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.