Abstract
We investigate Boolean degree 1 functions for several classical association schemes, including Johnson graphs, Grassmann graphs, graphs from polar spaces, and bilinear forms graphs, as well as some other domains such as multislices (Young subgroups of the symmetric group). In some settings, Boolean degree 1 functions are also known as completely regular strength 0 codes of covering radius 1, Cameron–Liebler line classes, and tight sets.We classify all Boolean degree 1 functions on the multislice. On the Grassmann scheme Jq(n,k) we show that all Boolean degree 1 functions are trivial for n≥5, k,n−k≥2 and q∈{2,3,4,5}, and that, for general q, the problem can be reduced to classifying all Boolean degree 1 functions on Jq(n,2). We also consider polar spaces and the bilinear forms graphs, giving evidence that all Boolean degree 1 functions are trivial for appropriate choices of the parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.