Abstract
This study examines changes in the abundance and diversity of soil macroinvertebrate taxa and soil water storage across different disturbance treatments in a tropical savanna woodland in northern Australia. Nine plots representing three habitat disturbance treatments (uncleared savanna woodland; 25-year-old regrowth following past clearing; cleared areas) were sampled for macrofauna using soil pits in April 2003. Sub-surface soil moisture (0–0.4 m) was measured at 0.1 m intervals over the 2002/2003 wet season. Termites represented 55% of total individuals sampled. Abundance of soil macrofauna was greatest in uncleared plots and lowest in cleared plots, with the latter treatment also having the lowest taxon diversity. Mean abundances of termites, earthworms and ants were greatest in uncleared treatment plots. Five termite species from four genera were present, with Microcerotermes nervosus constituting 47% of termite species identified. Of the wood-, grass- and polyphagous-feeding termites present, wood-feeding species were restricted to uncleared treatment plots and grass-feeders to regrowth treatment plots. A shift in termite nesting habits from epigeal to hypogeal was observed from uncleared to cleared treatments. Soil water storage was lowest in the dry season and highest during the monsoon, and varied significantly across habitat disturbance treatments at the start and end of the wet season. Cleared plots were least effective in the capture of the first wet season rains, and uncleared treatment plots showed the greatest capacity to retain soil water during the transition from wet to dry season. The negative effects of habitat disturbance on soil water storage may have been partially mediated by the observed changes in soil macrofauna, especially termites.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.