Abstract

Background:In bone tissue engineering, extracellular matrix exerts critical influence on cellular interaction with porous biomaterial and the apatite playing an important role in the bonding process of biomaterial to bone tissue. The aim of this study was to observe the therapeutic effects of hybrid rapid prototyping (RP) scaffolds comprising polylactic-co-glycolic acid (PLGA), β-tricalciumphosphate (β-TCP), collagen I and apatite (PLGA/β-TCP-collagen I/apatite) on segmental bone defects in conjunction with combination with bone marrow mesenchymal stem cells (BMSCs).Materials and Methods:BMSCs were seeded into the hybrid RP scaffolds to repair 15 mm defect in the radius of rabbits. Radiograph, microcomputed tomography and histology were used to evaluate new bone formation.Results:Radiographic analysis done from 12 to 36 weeks postoperative period demonstrated that new bone formed at the radial defect site and continues to increase until the medullary cavity is recanalized and remodelling is complete. The bone defect remained unconnected in the original RP scaffolds (PLGA/β-TCP) during the whole study. Histological observations conformed to the radiographic images. In hybrid RP scaffold group, woven bone united the radial defect at 12 weeks and consecutively remodeled into lamellar bone 24 weeks postoperation and finally matured into cortical bone with normal marrow cavity after another 12 weeks. No bone formation but connective tissue has been detected in RP scaffold at the same time.Conclusion:Collagen I/apatite sponge composite coating could improve new bone formation in vivo. The hybrid RP scaffold of PLGA/β-TCP skeleton with collagen I/apatite sponge composite coating is a promising candidate for bone tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call